Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Diffraction properties of the nanostructured surface.

Identifieur interne : 000E98 ( Main/Exploration ); précédent : 000E97; suivant : 000E99

Diffraction properties of the nanostructured surface.

Auteurs : RBID : pubmed:23421301

English descriptors

Abstract

The photosensitive In2O3-p-InSe heterostructures in which the In2O3 frontal layer has a nanostructured surface were investigated. The photoresponse spectra of such heterostructures are found to be essentially dependent on surface topology of the oxide. The obtained results indicate that the In2O3 oxide is not only the active component of the structure but also acts as a diffraction cellular element. The oxide surface topology was investigated by means of the atomic-force microscope technique. It was established that the surface topology is caused by the technological conditions of growing In2O3 oxides. Under different conditions of oxidation the sample surfaces had contained nanoformations preferably in the form of nanoneedles. Their location has both a disordered and ordered character. The sizes, form and density of the nanoneedles are different, too. A dimensional optical effect in the oxide was found to be due to the anisotropic light absorption in InSe. The higher deviation of incident light from its normal direction due to a nanostructured surface is the higher variation in the generation of carriers in the semiconductor is. These changes consist in the energy broadening of the heterostructure photoresponse spectrum as well in peculiarities of the excitonic line. The higher density and ordering of the nanoneedles on the oxide surface is the higher long-wave shift and more intensive excitonic peak in spectrum takes place.

PubMed: 23421301

Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Diffraction properties of the nanostructured surface.</title>
<author>
<name sortKey="Katerynchuk, V M" uniqKey="Katerynchuk V">V M Katerynchuk</name>
<affiliation wicri:level="1">
<nlm:affiliation>Chernivtsi Department of the I.M. Frantsevych Institute of Materials Science Problems, The National Academy of Sciences of Ukraine, 5, Iryna Vilde St., 58001 Chernivtsi, Ukraine.</nlm:affiliation>
<country xml:lang="fr">Ukraine</country>
<wicri:regionArea>Chernivtsi Department of the I.M. Frantsevych Institute of Materials Science Problems, The National Academy of Sciences of Ukraine, 5, Iryna Vilde St., 58001 Chernivtsi</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Kovalyuk, Z D" uniqKey="Kovalyuk Z">Z D Kovalyuk</name>
</author>
<author>
<name sortKey="Savchuk, A I" uniqKey="Savchuk A">A I Savchuk</name>
</author>
</titleStmt>
<publicationStmt>
<date when="2012">2012</date>
<idno type="RBID">pubmed:23421301</idno>
<idno type="pmid">23421301</idno>
<idno type="wicri:Area/Main/Corpus">000788</idno>
<idno type="wicri:Area/Main/Curation">000788</idno>
<idno type="wicri:Area/Main/Exploration">000E98</idno>
</publicationStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Indium (chemistry)</term>
<term>Light</term>
<term>Macromolecular Substances (chemistry)</term>
<term>Materials Testing</term>
<term>Metal Nanoparticles (chemistry)</term>
<term>Metal Nanoparticles (ultrastructure)</term>
<term>Molecular Conformation</term>
<term>Particle Size</term>
<term>Refractometry (methods)</term>
<term>Scattering, Radiation</term>
<term>Surface Properties</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Indium</term>
<term>Macromolecular Substances</term>
</keywords>
<keywords scheme="MESH" qualifier="chemistry" xml:lang="en">
<term>Metal Nanoparticles</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Refractometry</term>
</keywords>
<keywords scheme="MESH" qualifier="ultrastructure" xml:lang="en">
<term>Metal Nanoparticles</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Light</term>
<term>Materials Testing</term>
<term>Molecular Conformation</term>
<term>Particle Size</term>
<term>Scattering, Radiation</term>
<term>Surface Properties</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The photosensitive In2O3-p-InSe heterostructures in which the In2O3 frontal layer has a nanostructured surface were investigated. The photoresponse spectra of such heterostructures are found to be essentially dependent on surface topology of the oxide. The obtained results indicate that the In2O3 oxide is not only the active component of the structure but also acts as a diffraction cellular element. The oxide surface topology was investigated by means of the atomic-force microscope technique. It was established that the surface topology is caused by the technological conditions of growing In2O3 oxides. Under different conditions of oxidation the sample surfaces had contained nanoformations preferably in the form of nanoneedles. Their location has both a disordered and ordered character. The sizes, form and density of the nanoneedles are different, too. A dimensional optical effect in the oxide was found to be due to the anisotropic light absorption in InSe. The higher deviation of incident light from its normal direction due to a nanostructured surface is the higher variation in the generation of carriers in the semiconductor is. These changes consist in the energy broadening of the heterostructure photoresponse spectrum as well in peculiarities of the excitonic line. The higher density and ordering of the nanoneedles on the oxide surface is the higher long-wave shift and more intensive excitonic peak in spectrum takes place.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Owner="NLM" Status="MEDLINE">
<PMID Version="1">23421301</PMID>
<DateCreated>
<Year>2013</Year>
<Month>02</Month>
<Day>20</Day>
</DateCreated>
<DateCompleted>
<Year>2013</Year>
<Month>04</Month>
<Day>04</Day>
</DateCompleted>
<DateRevised>
<Year>2013</Year>
<Month>11</Month>
<Day>21</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">1533-4880</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>12</Volume>
<Issue>11</Issue>
<PubDate>
<Year>2012</Year>
<Month>Nov</Month>
</PubDate>
</JournalIssue>
<Title>Journal of nanoscience and nanotechnology</Title>
<ISOAbbreviation>J Nanosci Nanotechnol</ISOAbbreviation>
</Journal>
<ArticleTitle>Diffraction properties of the nanostructured surface.</ArticleTitle>
<Pagination>
<MedlinePgn>8856-9</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>The photosensitive In2O3-p-InSe heterostructures in which the In2O3 frontal layer has a nanostructured surface were investigated. The photoresponse spectra of such heterostructures are found to be essentially dependent on surface topology of the oxide. The obtained results indicate that the In2O3 oxide is not only the active component of the structure but also acts as a diffraction cellular element. The oxide surface topology was investigated by means of the atomic-force microscope technique. It was established that the surface topology is caused by the technological conditions of growing In2O3 oxides. Under different conditions of oxidation the sample surfaces had contained nanoformations preferably in the form of nanoneedles. Their location has both a disordered and ordered character. The sizes, form and density of the nanoneedles are different, too. A dimensional optical effect in the oxide was found to be due to the anisotropic light absorption in InSe. The higher deviation of incident light from its normal direction due to a nanostructured surface is the higher variation in the generation of carriers in the semiconductor is. These changes consist in the energy broadening of the heterostructure photoresponse spectrum as well in peculiarities of the excitonic line. The higher density and ordering of the nanoneedles on the oxide surface is the higher long-wave shift and more intensive excitonic peak in spectrum takes place.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Katerynchuk</LastName>
<ForeName>V M</ForeName>
<Initials>VM</Initials>
<Affiliation>Chernivtsi Department of the I.M. Frantsevych Institute of Materials Science Problems, The National Academy of Sciences of Ukraine, 5, Iryna Vilde St., 58001 Chernivtsi, Ukraine.</Affiliation>
</Author>
<Author ValidYN="Y">
<LastName>Kovalyuk</LastName>
<ForeName>Z D</ForeName>
<Initials>ZD</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Savchuk</LastName>
<ForeName>A I</ForeName>
<Initials>AI</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType>Journal Article</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Nanosci Nanotechnol</MedlineTA>
<NlmUniqueID>101088195</NlmUniqueID>
<ISSNLinking>1533-4880</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance>Macromolecular Substances</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>045A6V3VFX</RegistryNumber>
<NameOfSubstance>Indium</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>4OO9KME22D</RegistryNumber>
<NameOfSubstance>indium oxide</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName MajorTopicYN="N">Indium</DescriptorName>
<QualifierName MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N">Light</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N">Macromolecular Substances</DescriptorName>
<QualifierName MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N">Materials Testing</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N">Metal Nanoparticles</DescriptorName>
<QualifierName MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName MajorTopicYN="Y">ultrastructure</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N">Molecular Conformation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N">Particle Size</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N">Refractometry</DescriptorName>
<QualifierName MajorTopicYN="Y">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N">Scattering, Radiation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N">Surface Properties</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2013</Year>
<Month>2</Month>
<Day>21</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2013</Year>
<Month>2</Month>
<Day>21</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2013</Year>
<Month>4</Month>
<Day>5</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">23421301</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV2/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000E98 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000E98 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV2
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:23421301
   |texte=   Diffraction properties of the nanostructured surface.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:23421301" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a IndiumV2 

Wicri

This area was generated with Dilib version V0.5.76.
Data generation: Tue May 20 07:24:43 2014. Site generation: Thu Mar 7 11:12:53 2024